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Abstract

How many people can hide in a given terrain, without any two of them seeing each other? We are interested in
finding the precise number and an optimal placement of people to be hidden, given a terrain withn vertices. In this
paper, we show that this is not at all easy: The problem of placing a maximum number of hiding people is almost
as hard to approximate as the MAXIMUM CLIQUE problem, i.e., it cannot be approximated by any polynomial-
time algorithm with an approximation ratio ofnε for someε > 0, unless P= NP. This is already true for a simple
polygon with holes (instead of a terrain). If we do not allow holes in the polygon, we show that there is a constant
ε > 0 such that the problem cannot be approximated with an approximation ratio of 1+ ε.  2002 Published by
Elsevier Science B.V.
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1. Introduction and problem definition

While many of the traditional art gallery problems such as VERTEX GUARD and POINT GUARD deal
with the problem of guarding a given polygon with a minimum number of guards, the problem of hiding a
maximum number of objects from each other in a given polygon is intellectually appealing as well. When
we let the problem instance be a terrain rather than a polygon, we obtain the following background, which
is the practical motivation for the theoretical study of our problem: A real estate agency owns a large,
uninhabited piece of land in a beautiful area. The agency plans to sell the land in individual pieces to
people who would like to have a cabin in the wilderness, which to them means that they do not see any
signs of human civilization from their cabins. Specifically, they do not want to see any other cabins. The
real estate agency, in order to maximize profit, wants to sell as many pieces of land as possible.

In an abstract version of the problem we are given a terrain which represents the uninhabited piece
of land that the real estate agency owns. Aterrain T is a two-dimensional surface in three-dimensional
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space, represented as a finite set of vertices in the plane, together with a triangulation of their planar
convex hull, and a height value associated with each vertex. By a linear interpolation inbetween the
vertices, this representation defines a bivariate continuous function. The corresponding surface in space
is also called a 2.5-dimensional terrain. A terrain divides three-dimensional space into two subspaces, i.e.,
a space above and a space below the terrain, in the obvious way. In the literature, a terrain is also called a
triangulated irregular network(TIN), see [16]. The problem now consists of finding a maximum number
of lots (of comparatively small size) in the terrain, upon which three-dimensional bounding boxes can
be positioned that represent the cabins such that no two points of two different bounding boxes see each
other. Two pointsseeeach other, if the straight line segment connecting the two points does not intersect
the space below the terrain. Since the bounding boxes that represent the cabins are small compared to the
overall size and elevation changes in the terrain (assume that we have a mountainous terrain), we may
consider these bounding boxes to be zero-dimensional, i.e., to be points on the terrain. We are now ready
to formally define the first problem that we study:

Definition 1. The problem MAXIMUM HIDDEN SET ON TERRAIN asks for a setS of maximum
cardinality of points on a given terrainT , such that no two points inS see each other.

In a variant of the problem, we introduce the additional restriction that these points on the terrain must
be vertices of the terrain.

Definition 2. The problem MAXIMUM HIDDEN VERTEX SET ON TERRAIN asks for a setS of
maximum cardinality of vertices of a given terrainT , such that no two vertices inS see each other.

In a more abstract variant of the same problem, we are given a simple polygon with or without holes
instead of a terrain. Asimple polygon with holesin the plane is given by its ordered sequence of vertices
on the outer boundary, together with an ordered sequence of vertices for each hole. Asimple polygon
without holesin the plane is simply given by its ordered sequence of vertices on the outer boundary.
Two points in the polygon see each other, if the straight line segment connecting the two points does not
intersect the exterior (and the holes) of the polygon. Again, we can impose the additional restriction that
the points to be hidden from each other must be vertices of the polygon. This yields the following four
problems.

Definition 3. The problem MAXIMUM HIDDEN SET ON POLYGON WITH(OUT) HOLES asks for a setS
of maximum cardinality of points in the interior or on the boundary of a given polygonP , such that no
two points inS see each other.

Definition 4. The problem MAXIMUM HIDDEN VERTEX SET ON POLYGON WITH(OUT) HOLES asks
for a setS of maximum cardinality of vertices of a given polygonP , such that no two vertices inS see
each other.

In this paper, we propose a reduction from MAXIMUM CLIQUE to MAXIMUM HIDDEN SET ON

POLYGON WITH HOLES. The same reduction with minor modifications will also work for MAXIMUM

HIDDEN SET ON TERRAIN, MAXIMUM HIDDEN VERTEX SET ON POLYGON WITH HOLES, and
MAXIMUM HIDDEN VERTEX SET ON TERRAIN. MAXIMUM CLIQUE cannot be approximated by
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a polynomial-time algorithm with a ratio ofn1−ε unless NP= ZPP1 and with a ratio ofn1/2−ε unless
NP= P for anyε > 0, wheren is the number of vertices in the graph [9]. We will show that our reduction
is gap-preserving (a technique proposed in [1]), and thus show inapproximability results for all four
problems. MAXIMUM CLIQUE consists of finding a maximum complete subgraph of a given graphG,
as usual.

For input polygons without holes, we propose a reduction from MAXIMUM 5-OCCURRENCE-2-
SATISFIABILITY TO MAXIMUM HIDDEN SET ON POLYGON WITHOUT HOLES, which works for
MAXIMUM HIDDEN VERTEX SET ON POLYGON WITHOUT HOLES as well.

Definition 5. The problem MAXIMUM 5-OCCURRENCE-2-SATISFIABILITY consists of finding a truth
assignment for the variables of a given Boolean formula. The formula consists of disjunctive clauses with
at most two literals and each variable appears in at most 5 literals. The truth assignment must satisfy a
maximum number of clauses.

MAXIMUM 5-OCCURRENCE-2-SATISFIABILITY is APX-hard, which is equivalent to saying that
there exists a constantε > 0 such that no polynomial algorithm can achieve an approximation ratio of
1+ ε for MAXIMUM 5-OCCURRENCE-2-SATISFIABILITY . See [3] for an introduction to the class APX
and for the relationship between the two classes APX and MaxSNP, see [12] for the MaxSNP-hardness
proof of MAXIMUM 5-OCCURRENCE-2-SATISFIABILITY and for the definition of MaxSNP. Please note
that MaxSNP-hardness implies APX-hardness [3].

We show that our reduction is gap-preserving and thus establish the APX-hardness of MAXIMUM

HIDDEN (VERTEX) SET ON POLYGON WITHOUT HOLES.
There are various problems that deal with terrains. Quite often, these problems have applications in

the field of telecommunications, namely in setting up communications networks. There are some upper
and lower bound results on the number of guards needed for several kinds of guards to collectively
cover all of a given terrain [2]. Very few results on the computational complexity of terrain problems are
known. The shortest watchtower (from where a terrain can be seen in its entirety) can be computed in
time O(n logn) [17]. The problem of finding a minimum number of vertices of a terrain such that guards
at these vertices see all of the terrain is NP-hard and cannot be approximated with an approximation
ratio that is better than logarithmic in the number of vertices of the terrain. Similar results hold for the
variation, where guards may only be placed at a certain given height above the terrain [7]. One of the most
intensely studied problems on terrains is the problem of computing the shortest path between two points
on the terrain. This problem can be solved in time O(n log2(n)) [10]. Many results (upper and lower
bounds, as well as computational complexity results) are known for visibility problems with polygons as
input structures. See [11,14,15] for an overview, as well as more recent work on the inapproximability of
VERTEX/EDGE/POINT GUARD on polygons with [6] and without holes [4].

The problems MAXIMUM HIDDEN SET ON A POLYGON WITHOUT HOLES and MAXIMUM HIDDEN

VERTEX SET ON A POLYGON WITHOUT HOLES are known to be NP-hard [13]. This immediately
implies the NP-hardness of the corresponding problems for polygons with holes. A quite simple reduction
from these polygon problems to the terrain problems (as given in Section 3) even implies the NP-hardness
for the two terrain problems as well. We report the firstinapproximability resultsfor these problems.

1 ZPP the class of problems that can be solved in expected polynomial time by a probabilistic algorithm that never makes
an error, i.e., only the running time is stochastic.
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In Section 2, we propose a reduction from MAXIMUM CLIQUE to MAXIMUM HIDDEN SET ON

POLYGON WITH HOLES. We show that our reduction is gap-preserving and obtain our inapproximability
results for MAXIMUM HIDDEN (VERTEX) SET ON A POLYGON WITH HOLES. We show that our
proofs also work for MAXIMUM HIDDEN (VERTEX) SET ON TERRAIN with minor modifications
in Section 3. In Section 4, we show the APX-hardness of MAXIMUM HIDDEN (VERTEX) SET ON

POLYGON WITHOUT HOLES. We draw conclusions in Section 5.

2. Hiding in polygons with holes

We propose a reduction from MAXIMUM CLIQUE to MAXIMUM HIDDEN SET ON POLYGON WITH

HOLES that constructs a polygon with holes for the hiding instance that very naturally corresponds to the
input graph of the clique instance.

Suppose we are given an instanceI of MAXIMUM CLIQUE, i.e., an undirected graphG = (V ,E),
where V = v0, . . . , vn−1. Let m := |E|. Fig. 1 shows an example. We construct an instanceI ′ of
MAXIMUM HIDDEN SET ON POLYGON WITH HOLES as follows.I ′ consists of a polygon with holes.
The polygon is basically a regular 2n-gon with holes, but we replace every other vertex by a comb-
like structure. Each hole is a small triangle designed to block the view of two combs from each other,
whenever the two vertices, to which the combs correspond, are connected by an edge in the graph. Fig. 2
shows as an example the polygon with holes constructed from the graph in Fig. 1. (Note that only the
solid lines are lines of the polygon and also note that the combs are not shown in Fig. 2.)

Let the regular 2n-gon consist of verticesv0, v
′
0, . . . , vn−1, v

′
n−1 in counterclock-wise order, to indicate

that we map each vertexvi ∈ V in the graph to a vertexvi in the polygon.
We need some notation, first. Letei,j denote the intersection point of the line segment fromv′

i−1 to v′
i

with the line segment fromvi to vj , as indicated in Fig. 3. (Note that we make liberal use of the notation
index for the vertices, i.e.,vi+1 is strictly speakingvi+1 modn, accordingly forvi−1.) Let d denote the
minimum of the distances ofei,j from ei,j+1, where the minimum is taken over alli, j = 1, . . . , n − 1.
Let e−

i,j (e+
i,j ) denote the point at distanced/3 from ei,j on the line fromv′

i−1 to v′
i that is closer to

v′
i−1 (v′

i ). Let mi be the midpoint of the line segment from vertexvi to vi+1 and letm′
i be the intersection

Fig. 1. A graph with five vertices.
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Fig. 2. Polygon constructed from the graph in Fig. 1.

Fig. 3. Pointse−
i,j , e+

i,j andeT
i,j .

point of the line fromv′
i to mi and frome+

i,i+1 to e−
i+1,i (see Fig. 3). Finally, leteT

i,j denote the intersection
point of the line frome−

i,j to m′
i and the line frome+

i,j to m′
i−1. The detailed construction of these points

is shown in Fig. 3.
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Fig. 4. Construction of the comb ofvi .

We let the triangle formed by the three verticese−
i,j , e+

i,j and eT
i,j be a hole in the polygon iff there

exists an edge inG from vi to vj . Recall Fig. 2, which gives an example. We now refine the polygon
obtained so far by cutting off a small portion at each vertexvi . For eachi ∈ {0, . . . , n − 1}, we introduce
two new verticesvi,0 andvi,n2+1 as indicated in Fig. 3. Vertexvi,n2+1 is defined as the intersection point
of the line that is parallel to the line fromvi−1 to vi and goes through pointe+

i,i−1 and of the line fromvi

to v′
i . Symmetrically, vertexvi,0 is defined as the intersection point of the line that is parallel to the line

from vi+1 to vi and that goes through pointe−
i,i+1 and of the line fromvi to v′

i−1.
We fix n2 additional verticesvi,1, . . . , vi,n2 on the line segment fromvi,0 to vi,n2+1 for eachi as shown

in Fig. 4. For a fixedi, the two verticesvi,l andvi,l+1 have equal distance for alll ∈ {0, . . . , n2}. Finally,
we fix n2+1 additional verticeswi,l for l ∈ {0, . . . , n2} for eachi. Vertexwi,l is defined as the intersection
point of the line from vertexvi−1 throughvi,l with the line from vertexv′

i throughv′
i,l+1 The polygon

between two verticesv′
i−1 andv′

i is now given by the following ordered sequence of vertices:

v′
i−1, vi,0,wi,0, vi,1,wi,1, . . . , vi,n2,wi,n2, vi,n2+1, v

′
i

as indicated in Fig. 4. We call the set of all trianglesvi,l,wi,l, vi,l+1 for a fixedi and all l ∈ {0, . . . , n2}
thecomb ofvi .

The constructed polygon satisfies the following property.

Lemma 1. In any feasible solutionS ′ of the MAXIMUM HIDDEN SET ON POLYGON WITH HOLES

instanceI ′, at most2n points inS can be placed outside the combs.

Proof. In each of then trapezoids{v′
i−1, v

′
i , vi,n2+1, vi,0} (see Figs. 2 and 3), there can be at most

one point, which givesn points in total. Moreover, by our construction any pointp in the trapezoid
{v′

i−1, v
′
i ,m

′
i ,m

′
i−1} (not in the holes) can see every pointp′ in the n-gon {v′

0, . . . , v
′
n} except for

pointsp′ in any of the holes and (possibly) except for pointsp′ in the triangles{v′
i−1,m

′
i−1, e

+
i−1,i} and

{v′
i ,m

′
i , e

−
i+1,i} (see Fig. 3). Therefore, all points inS ′ that lie in then-gon {v′

0, . . . , v
′
n} must lie in only

one of then polygons{e+
i−1,i ,m

′
i−1,m

′
i , e

+
i+1,i , v

′
i , v

′
i−1}. Obviously, at mostn points can be hidden in any

one of these polygons.✷
We have the following observation, which follows directly from the construction.

Observation 1. Any point in the comb ofvi sees the entire comb of vertexvj , if (vi, vj ) is not an edge in
the graph. If(vi, vj ) is an edge in the graph, then no point in the comb ofvi sees any point in the comb
of vj .
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Given a feasible solutionS ′ of the MAXIMUM HIDDEN SET ON POLYGON WITH HOLES instanceI ′,
we obtain a feasible solutionS of the MAXIMUM CLIQUE instanceI as follows: A vertexvi ∈ V is in
the solutionS, iff at least one point fromS ′ lies in the comb ofvi . To see thatS is a feasible solution,
assume by contradiction that it is not a feasible solution. Then, there exists a pair of verticesvi, vj ∈ S

with no edge between them. But then, there is by construction no hole in the polygon to block the view
between the comb ofvi and the comb ofvj .We need to show that the construction ofI ′ can be done in
polynomial time and that a feasible solution can be transformed in polynomial time. There are 2n2 + 1
vertices in each of then combs. We have additionaln verticesv′

i . There are 2 holes for each edge in the
graph and each hole consists of 3 vertices. Therefore, the polygon consists of 6m + 2n3 + 2n vertices.
It is known in computational geometry that the coordinates of intersection points of lines with rational
coefficients can be expressed with polynomial length [8]. All of the points in our construction are of this
type. Therefore, the construction is polynomial. The transformation of a feasible solution can obviously
be done in polynomial time.

We obtain our inapproximability result, again, by using the technique of gap-preserving reductions,
which consists of transforming a promise problem into another promise problem. Let OPT denote the size
of an optimum solution of the MAXIMUM CLIQUE instanceI , let OPT′ denote the size of an optimum
solution of the MAXIMUM HIDDEN SET ON POLYGON WITH HOLES instanceI ′, let k � n, and let
ε > 0.

Lemma 2. OPT� k ⇒ OPT′ � n2k.

Proof. If OPT � k, then there exists a clique inI of sizek. We obtain a solution forI ′ of sizen2k by
simply letting then2 verticeswi,l for l ∈ {0, . . . , n2} be in the solution if and only if vertexvi ∈ V is in
the clique. The solution thus obtained forI ′ is feasible (see Observation 1).✷
Lemma 3. OPT< k/n1/2−ε ⇒ OPT′ < n2k/n1/2−ε + 2n.

Proof. We prove the contraposition:

OPT′ � n2k

n1/2−ε
+ 2n �⇒ OPT� k

n1/2−ε
.

Suppose we have a solution ofI ′ with n2k/n1/2−ε + 2n points. At most 2n of the points in the solution
can be outside the combs, because of Lemma 1. Therefore, at leastn2k/n1/2−ε points must be in the
combs. From the construction of the combs, it is clear that at mostn2 points can hide in each comb.
Therefore, the number of combs that contain at least one point from the solution is at least

n2k/n1/2−ε

n2
= k

n1/2−ε
.

The transformation of a solution as described above yields a solution ofI with at leastk/n1/2−ε

vertices. ✷
Lemmas 2 and 3 transform the NP-hard promise problem of MAXIMUM CLIQUE, where we are

promised that the optimum solution consists of either at leastk or strictly less thank/n1/2−ε vertices,
into the NP-hard promise problem of MAXIMUM HIDDEN SET ON POLYGON WITH HOLES, where we
are promised that an optimum solution consists of either at leastn2k or strictly less thann2k/n1/2−ε + 2n
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hidden points. Thus, MAXIMUM HIDDEN SET ON POLYGON WITH HOLES cannot be approximated
with an approximation ratio of

n2k

n2k/n1/2−ε + 2n
>

n1/2−ε

2
,

where we have assumed thatk � 2. We need to express the number of graph verticesn by the number
of polygon vertices|I ′| of the polygon of instanceI ′. Note that|I ′| � 10n3 and thereforen � |I ′|1/3/3.
Thus,

n1/2−ε

2
� |I ′|1/6−ε/3/31/2−ε

2
>

|I ′|1/6−ε/3

4
.

This yields the main result of this section.

Theorem 1. MAXIMUM HIDDEN VERTEX SET ON POLYGON WITH HOLES cannot be approximated
by any polynomial time algorithm with an approximation ratio of|I ′|1/6−γ /4, where|I ′| is the number
of vertices in the polygon, and whereγ > 0, unlessNP= P.

If we restrict the hidden set to contain only vertices, we can use the same construction. Actually,
we do not need the combs, as our construction guarantees that in any solution there can be at most
2 points hiding at vertices other thanvi . This leads to a different promise problem of MAXIMUM HIDDEN

VERTEX SET OF POLYGON WITH HOLES that the promise problem of MAXIMUM CLIQUE is mapped
to, namely the promise problem, where we are promised that an optimum solution consists of either at
leastk vertices or strictly less thank/n1/2−ε + 2 vertices. Straightforward analysis, using the fact that
|I ′| � 5n2, leads to the following result.

Theorem 2. MAXIMUM HIDDEN VERTEX SET ON POLYGON WITH HOLES cannot be approximated
by any polynomial time algorithm with an approximation ratio of|I ′|1/4−γ /4, where|I ′| is the number
of vertices in the polygon, and whereγ > 0, unlessNP= P.

3. Hiding in terrains

Theorem 3. The problemsMAXIMUM HIDDEN SET ON TERRAIN (MAXIMUM HIDDEN VERTEX SET

ON TERRAIN) cannot be approximated by any polynomial time algorithm with an approximation ratio of
(|I ′′|1/6−γ /4)(|I ′′|1/4−γ /4), where|I ′′| is the number of vertices in the terrain, and whereγ > 0, unless
NP= P.

Proof. The proof very closely follows the lines of the proof for the inapproximability of MAXIMUM

HIDDEN (VERTEX) SET ON POLYGON WITH HOLES. We use the same construction, but given the
polygon with holes of instanceI ′ we create a terrain (i.e., instanceI ′′) by simply letting all the area
outside the polygon (including the holes) have heighth for some constanth > 0 and by letting the area
in the interior have height 0.

We add four vertices to the terrain by introducing a rectangular bounding box around the regular
2n-gon. This yields a terrain with vertical walls, which can be easily modified to have steep but not
vertical walls, as required by the definition of a terrain. Finally, we triangulate the terrain.✷
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4. Hiding in polygons without holes

We propose a gap-preserving reduction from MAXIMUM 5-OCCURRENCES-2-SATISFIABILITY to
MAXIMUM HIDDEN SET ON POLYGON WITHOUT HOLES, which allows us to prove the APX-hardness
of MAXIMUM HIDDEN SET ON POLYGON WITHOUT HOLES. The same reduction will also work for
MAXIMUM HIDDEN VERTEX SET ON POLYGON WITHOUT HOLES with minor modifications.

Suppose we are given an instanceI of MAXIMUM 5-OCCURRENCE-2-SATISFIABILITY , which
consists ofn variablesx0, . . . , xn−1 andm clausesc0, . . . , cm−1. We construct a polygon without holes,
i.e., an instanceI ′ of MAXIMUM HIDDEN SET ON POLYGON WITHOUT HOLES, which consists of
clause patterns and variable patterns, as shown schematically in Fig. 5. The construction consists of the
following building blocks:

We have a variable pattern for each variable that consists of a TRUE- and a FALSE-leg. We have a
clause pattern for each clause that is a simple zig-zag line forming 3 dents. The variable patterns contain
a small dent, which we will call “cone”, for each occurrence of the variable in the input satisfiability
formula. These cones “connect” the variable patterns with the clause patterns.

We construct a variable pattern for each variablexi as indicated in Fig. 6. Each variable pattern consists
of a TRUE- and a FALSE-leg. Each leg has on its left boundary a maximum of five triangle-shaped dents
with verticesfk for k = 1, . . . ,5. Each of these dents represents the lower part of a cone that connects the
variable pattern to a clause pattern, in which the variable appears as a literal, as indicated in Fig. 7. Since
these dents are triangle-shaped, we call the whole dent thetriangle of fk. All these triangles are attached
to a single line as indicated in Fig. 6 on their right side, i.e., the “right” line segments of each triangle in
a leg are collinear.

Each variable pattern contains at its right side exactly four dents with verticesv1, v2, v3 andw. The
construction is such that a point that is hiding in the triangle of anyfk sees the triangles ofv1, v2 andv3

completely, but it does not see the triangle ofw. Therefore, we can hide in each leg a point at vertexw

and additional points either in the triangles offk on the left side or in the triangles ofvk on the right side,
but not in both. The idea is the following: if the variable is TRUE, then we hide points in the TRUE-leg

Fig. 5. Schematic construction.
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Fig. 6. Variable pattern.

Fig. 7. Clause pattern with cones.

of the variable pattern at verticesfk, for k = 1, . . . ,5 and at vertexw. In the FALSE-leg, we hide points
at verticesv1, v2, v3 andw.

For each clauseci we construct a clause pattern as indicated in Fig. 7. A clause pattern consists of three
dents, where the left and the right dent represent the literals of the clause. The middle dent represents
the truth value of the clause. The construction is such that we can hide three points in the clausepattern
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(i.e., one in each dent), exactly if the clause is satisfied. We can hide only two points (one in the left and
one the right dent), otherwise. To achieve this we connect the variable patterns to the clause patterns with
cones as illustrated in Fig. 7 for two variablesxi andxj and a clause(xi,¬xj ). This works accordingly
for other types of clauses. Cones are drawn as thin solid lines. They are not part of the polygon boundary,
but merely help in the construction.

We will show that this reduction is gap-preserving, i.e., it maps an NP-hard promise problem
of MAXIMUM 5-OCCURRENCE-2-SATISFIABILITY to an NP-hard promise problem of MAXIMUM

HIDDEN SET ON POLYGON WITHOUT HOLES. The reduction has the following properties:

Lemma 4. If there exists a truth assignment S to the variables of theMAXIMUM 5-OCCURRENCE-
2-SATISFIABILITY instanceI that satisfies at least(1 − ε)m clauses, then there exists a solutionS ′ of
theMAXIMUM HIDDEN SET WITHOUT HOLES instanceI ′ with |S ′| � 10n + 2m + (1− ε)m.

Proof. If variable xi is TRUE in S, then we let the verticesf1, . . . , f5 andw of the TRUE-leg ofxi ,
as well as the verticesv1, v2, v3 andw of the FALSE-leg ofxi be in the solutionS ′; vice-versa ifxi is
FALSE inS. This gives us 10n points inS ′.

The remaining points forS ′ are in the clause patterns. Fig. 7 shows the clause pattern for a clause
(xi,¬xj )

2, together with the cones that link the clause pattern to the corresponding variable patterns.
Remember that these cones are not part of the polygon boundary. To understand Fig. 7, assumexi is
assigned the value FALSE andxj is assigned the value TRUE, i.e., the clause(xi,¬xj ) is not satisfied.
Then there is a point in the solution that sits at vertexfk (for somek) in the FALSE-leg ofxi and a point
that sits at vertexfk′ (for somek′) in the TRUE-leg ofxj . In this case, we can have onlytwo additional
points in the solutionS ′ at points➀ , ➅ . In the remaining three cases, where the variablesxi andxj are
assigned truth values such that the clause is satisfied, we can havethreeadditional points inS ′ at ➀ –➅ :
If xi andxj are both FALSE in the solutionS, then we hide points in the clause pattern at points➀ , ➃
and ➄ . If xi andxj are both TRUE, then we hide points in the clause pattern at points➁ , ➂ and ➅ . If
xi is TRUE andxj is FALSE, then we can hide points in the clause pattern at point➁ and ➄ , and one
additional point at either➂ or ➃ .

Therefore, we have 2 points from all unsatisfied clauses and 3 points from all satisfied clauses, i.e.,
2εm + 3(1 − ε)m points that are hidden in the clause patterns. Thus,|S ′| � 10n + 2m + (1 − ε)m, as
claimed. ✷
Lemma 5. If there exists a solutionS ′ of I ′ with |S ′| � 10n+3m− (ε+γ )m, then there exists a variable
assignmentS of I that satisfies at least(1− ε − γ )m clauses.

Proof. For any solutionS ′, we can assume that in each leg of each variable pattern, all points inS ′ are
either in the triangles of verticesf1, . . . , f5 andw, or in the triangles of verticesv1, v2, v3 andw. To see
this, note that there can be at most one point in each leg outside the triangles. This point either seesw or
at least one of the trianglesv1, v2, v3. In the first case, we can move the point tow. In the second case, we
move it to thevl in sight. This results again in a feasible solution. Furthermore, any point in any triangle
of f1, . . . , f5 sees the triangles ofv1, v2, v3 completely (and vice-versa).3

2 The proofs work accordingly for other types of clauses, such as(xi , xj ).
3 We need the triangle ofw to ensure that, if there are points hiding in the triangles of thefk ’s, there can be no additional

point hiding outside the triangles in the leg.
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As a first step in transforming the solutionS ′, we move the points that are hiding in the triangles to the
verticesfk , v1, v2, v3 andw, respectively. This transformation is obviously no problem for the triangles
of v1, v2, v3 andw. Moving the points in the triangles of verticesfk will slightly change the cones that
they see as indicated in Fig. 7 through dashed lines. However, we can still position at least the same
number of points in the clause patterns. Thus, this transformation yields a feasible hidden set of points
that consists of at least as many points as the original solution.

We now describe how to transform the solutionS ′ (with |S ′| � 10n + 3m − (ε + γ )m) in such a way
that it remains feasible, that its size (i.e., the number of hidden points) does not decrease, and that we will
be able to assign truth values to the variables. Hence our goal is that at the end, we have for each variable
pattern the six points atf1, . . . , f5, andw from one leg in the solution and the 4 pointsv1, v2, v3 andw

from the other leg. Thus, we can easily obtain a truth assignment for the variables by letting variablexi

be TRUE iff the six points atf1, . . . , f5 andw from the TRUE-leg are in the solution. We now show
how to transform a feasible hidden set of points into one that obeys to these additional properties without
decreasing the number of hidden points.

Hence, for any variablexi we show how to transform the two legs corresponding toxi into the desired
configuration. Note that the construction of the TRUE-leg and the FALSE-leg are symmetric. For the
case analysis, we may therefore assume without loss of generality that there are at least as many points
hiding in thefk triangles of the TRUE-leg as in thefk triangles of the FALSE-leg.
• If there are 5 points hidden at verticesfk of the TRUE-leg ofxi and 5, 4, 3, 2 or 1 point(s) at verticesfk

of the FALSE-leg, then we delete the points in the FALSE-leg and set 3 hidden points at verticesvl

of the FALSE-leg. This yields a better solution, since the difference of guards in the variable pattern
is −2, −1, 0, +1, +2 and we can position 5, 4, 3, 2, 1 additional guards in the dents of the clause
patterns that correspond to literals ofxi . These additional guards could not have been placed in the
original solution, since the whole area of the dents was seen by the points at verticesfk of both the
TRUE- and the FALSE-leg.

• If there are 4 points hidden at verticesfk of the TRUE-leg ofxi and 4, 3, 2 or 1 point(s) at verticesfk

of the FALSE-leg, then we delete the points in the FALSE-leg and set 3 hidden points at verticesvl of
the FALSE-leg. Moreover, we place an additional point at the one vertexfk in the TRUE-leg, where
there is not already a point hiding. Again, this yields a better solution, since the difference of guards
in the variable pattern is 0,+1, +2, +3 and we can position at least 3, 2, 1, 0 additional guards in the
dents of the clause patterns that correspond to literals ofxi , which was impossible before. Because of
the additional guard atfk in the TRUE-leg, we might lose at most one hidden point in a middle dent
of a clause pattern.

• If we have 4 points hidden at verticesfk of the TRUE-leg and no points at verticesfk of the FALSE-
leg, then we place 1 additional guard at the one vertex where there is not already a point hidden. This
yields an equally good solution, since we have 1 additional points in the variable pattern and at most
1 fewer point in the middle dents of clause patterns.

• If there are at most 3 points hidden at the verticesfk or the TRUE-leg, we first remove all the points
in thefk triangles of the TRUE- and the FALSE-leg and put points into thevk triangles of both legs
instead. This does not reduce the number of hiding points. We then argue as follows. Let us assume
without loss of generality that the literalxi appears more often in the formula than¬xi . In this case,
we remove the 3 hiding points in thevl triangles of the TRUE-leg and replace them by 5 points in the
fk triangles of the TRUE-leg. This yields a better or equally good solution, since we have 2 additional



S. Eidenbenz / Computational Geometry 21 (2002) 139–153 151

guards in the variable pattern and we lose at most 2 guards in the middle dents of clause patterns as
we falsify at most 2 clauses.

As a last step in the transformation, we add points at each vertexw in each leg, if there are no points
hiding there already.

Thus, the transformed solutionS ′ consists of at least 10n + 3m − (ε + γ )m points, 10n of which lie in
the variable patterns. At most 3 points can lie in each clause pattern. If 3 points lie in a clause pattern, then
this clause is satisfied. Therefore, if 2 points lie in each clause pattern, there are still at least(1− ε −γ )m

additional points inS ′. These must lie in clause patterns as well. Therefore, at least(1− ε − γ )m clauses
are satisfied. ✷

Lemmas 4 and 5 transform the promise problem of MAXIMUM 5-OCCURRENCE-3-SATISFIABILITY

into a promise problem of MAXIMUM HIDDEN SET WITHOUT HOLES. In the promise problem of
MAXIMUM 5-OCCURRENCE-2-SATISFIABILITY , we are promised that an optimum solution either
satisfies at least(1−ε)m clauses or strictly less than(1−ε−γ )m clauses for some constantε, γ > 0. For
small enough values4 of ε, γ > 0, it is NP-hard to decide, which of the two cases is true. This follows
from the fact that MAXIMUM 5-OCCURRENCE-3-SATISFIABILITY is APX-complete. In the promise
problem of MAXIMUM HIDDEN SET ON POLYGON WITHOUT HOLES, we are promised that either at
least 10n + 3m − εm points can be hidden from each other, or strictly less than 10n + 3m − (ε + γ )m

points can be hidden from each other. Again, it is NP-hard to decide, what is true. Thus, MAXIMUM

HIDDEN SET ON POLYGON WITHOUT HOLES cannot be approximated with an approximation ratio of

10n + 3m − εm

10n + 3m − (ε + γ )m
= 10n + 3m − εm − γ m

10n + 3m − εm − γ m
+ γ m

10n + 3m − εm − γ m

= 1+ γ m

10n + 3m − εm − γ m
� 1+ γ m

m(33− ε − γ )
� 1+ γ

33
.

We have used thatm � n/3. Thus:

Theorem 4. MAXIMUM HIDDEN SET ON POLYGON WITHOUT HOLES is APX-hard.

If we restrict the hidden set to consist of only vertices, we can use the same reduction and the
same analysis with the modification that we introduce additional vertices in each clause pattern. More
specifically, we replace each edge of all dents of the clause patterns by two, slightly convex edges that
have their common endpoint right where the corresponding point➀ –➅ from Fig. 7 is. Thus, the result
carries over.

Theorem 5. MAXIMUM HIDDEN VERTEX SET ON POLYGON WITHOUT HOLES is APX-hard.

5. Conclusion

We have shown that the problems MAXIMUM HIDDEN (VERTEX) SET ON POLYGON WITH HOLES

and MAXIMUM HIDDEN (VERTEX) SET ON TERRAIN are almost as hard to approximate as MAXIMUM

4 We needε as a second parameter, since we can find out in polynomial time, whether all clauses of a MAXIMUM

5-OCCURRENCE-2-SATISFIABILITY instance are satisfiable [12]; only the optimization version of MAXIMUM 5-OC-
CURRENCE-2-SATISFIABILITY is NP-hard.



152 S. Eidenbenz / Computational Geometry 21 (2002) 139–153

CLIQUE. We could prove for all these problems an inapproximability ratio of O(|I ′|1/3−γ ), but under the
assumption that coR�= NP, using the stronger inapproximability result for MAXIMUM CLIQUE from [9].
Furthermore, we have shown that MAXIMUM HIDDEN (VERTEX) SET ON POLYGON WITHOUT HOLES

is APX-hard. As for approximation algorithms, an approximation algorithm for all considered problems
that simply returns a single vertex achieves an approximation ratio ofn. No approximation algorithms
are known that achieve approximation ratios of o(n).

Note that our proofs can easily be modified to work as well for polygons or terrains, where no three
vertices are allowed to be collinear.

We have classified the problems MAXIMUM HIDDEN (VERTEX) SET ON POLYGON WITH HOLESand
MAXIMUM HIDDEN (VERTEX) SET ON TERRAIN to belong to the class of problems inapproximable
with an approximation ratio ofnε for someε > 0, as defined in [1]. The APX-hardness results for
the problems for polygons without holes, however, do not precisely characterize the approximability
characteristics of these problem. The gap between the best (known) achievable approximation ratio
(which is n) and the best inapproximability ratio is still very large for these problems and should be
closed in future research.
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